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ABSTRACT 
 Microchannels which are light in weight, smaller in size, handle low amount of coolants and provide higher surface 

area to volume ratio give higher heat transfer coefficients are efficient cooling devices for various modern electronic 

systems where higher heat fluxes are encountered. In this connection an experimental investigation has been carried 

out on the laminar flow and convective heat transfer of deionized water in circular microchannels. To explore the the 

validity of classical correlations of friction factor based on conventional sized channels for predicting the fluid 

behavior of single phase liquid flow of water through circular microchannels experiments were conducted with 

deionized water with Reynolds number ranging from 71 to 1495. The copper microchannels used in the experiment 

have the hydraulic diameter of 279 µm and 45 mm length. Pressure drop and flow rates were measured to analyze 

the flow characteristics. The results show good agreement between the classical correlations of friction factor and 

the experimentally measured data.  
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INTRODUCTION 
Miniaturization of Microfluidic devices has led to development of high heat fluxes during operation of these 

devices. We are in the era of developing Micro and Nano devices leading tremendous increase in power density 

which arises significant thermal management problems. One of the solutions proposed is to enhance heat transfer by 

using microchannels. In a microchannel a fluid is used to carry away heat from the small hot surface by forcing it 

through passages having hydraulic diameters ranging from 10 µm to 200 µm [1]. As a microchannel has higher heat 

transfer surface area to fluid volume ratio, so it provides high heat transfer coefficient for convective heat transfer. 

However this small channel experiences a considerable pressure drop. 

 

The pioneer work in the field of heat transfer using microchannel heat sink for electronic cooling was first time 

demonstrated by Tuckerman and Pease [2] by achieving high heat flux removal capacity of up to 800 W/cm2 with 

microchannels in single-phase and two-phase flows. They noted that as the hydraulic diameter of the channel 

decreases, the heat transfer coefficient increases. This landmark work paved the door for further research in the area 

of microchannel heat transfer. However it has been reported by various researchers that phenomena in 

microgeometry may differ from those in macroscopic counterparts and great differences still exist between the 

available measured data of Nusselt number and friction factor. One of the important factor for variations in reported 

data may be differences in channel roughness [3].The review conducted by  Steinke and Kandlikar [4] on the results 

of single-phase liquid friction factors in microchannels concluded that conventional Stokes and Poiseuille flow 

theories could apply for single–phase liquid flow in microchannel flows. Mala and Li [5] conducted experiments on 

flow of water through microtubes with inner diameters from (50 µm to 254 µm ) made of fused silica and stainless 

steel. For higher values  of Reynolds number, they found a noticeable increase in friction factor, compared to the 
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predictions based on conventional Poiseuille flow theory. They also observed the material dependence of flow 

behavior, for similar flow and hydraulic diameter; fused silica microtubes exhibited higher friction factor than 

stainless- steel microtubes. But for larger microtubes, as well as for lower Reynolds number flows , the experimental 

data were in agreement with the conventional theory. The most salient feature of their work was the attribution of 

these deviations of microscale flow characteristics to the effects of surface roughness of the microtubes. Choi et al. 

[6] conducted experiments in circular silica  microtubes with inside diameters 3, 7, 10,53 and  81.2 µm having 

length 24 to 52 mm with nitrogen as working fluid for evaluating heat transfer and pressure drop 

characteristics.They observed that for both laminar and turbulent flows Nusselt number depends on Reynolds 

number in a different manner as compared to macroscale theory. Based on  the measurements they found  the critical 

Reynolds number  2000, which is concurrent with microtubes. Qu et al.[7] conducted experiments to investigate the 

flow behavior of water through trapezoidal silicon microchannels ( 51 µm ≤ D ≥ 169 µm ) and apply the roughness 

viscocity model to explain the experimentally obtained higher values of friction factor. Pfund et al. [8] 

experimentally investigated the water flow characteristics through high-aspect-ratio  smooth and rough rectangular 

microchannels (128 µm ≤ D ≥ 521 µm ) for Reynolds number ranging 60 to 3450, and concluded that the laminar 

flow friction was considerably higher than the classical value for the rougher microchannels. Wu and Cheng [9] in 

their experimental study found that for channels having similar geometry, the friction factor obtained was higher for 

the channel having the greater surface roughness and it was in accordance with the majority of the works 

highlighting the effects of surface roughness on microflow characteristics. 

Li et al.[10-11] in their experimental study for laminar flow of deionized water through glass, silicon and stainless 

steel microtubes ( 79.9 µm ≤ D ≥ 166.3 µm ) and obtained the Poiseuille number relatively higher for rougher 

stainless steel microtubes than for smoother glass and silica microtubes. Further they found that for rough stainless 

steel microtubes ( 373 µm ≤ D ≥ 1570 µm ) the friction factor was not only higher than the predicted by 

conventional theory but increased further as relative roughness increased. However experimental values of friction 

factor  found in agreement with the values predicted  by conventional theory for water flows through relatively 

smooth fused silica microtubes  ( 50 µm ≤ D ≥ 100 µm ). They also concluded that classical theory successfully 

addressed the frictional characteristics  for flows in microtubes with relative surface roughness less than about 1.5 

%. Most of the experimental studies conducted have reveled deviations in the values of friction factor from classical 

conventional theory the reasons asserted are by various researchers are experimental uncertainty, surface roughness. 

 From the review of literature it has been observed that there is a large scatter in the data measured for friction factor 

and reasons suggested by various studies are contradictory. Meanwhile recent papers  have shown that conventional 

theory is applicable by careful evaluation of geometry or by considering other effects. In this present work an 

attempt is made to investigate friction factor experimentally and  then comparing with theory. 

 

EXPERIMENTAL SETUP 
The Experimental setup used in this investigation for measurements   of pressure   and temperature difference at 

inlet and outlet of the test section is shown in Figure 1. A flow pump is used to drive the Deionized water from a 

water holding tank; the flow pump provides smooth and steady flow over a wide range of flow rates that 

corresponds to a Reynolds number ranging from 50 to 1500. In order to avoid blockage of the microchannels , a 

submicron filter of 0.1µm was installed between outlet of pump and inlet of test section . The  test  section  was 

enveloped  by  the  heated  oil  in  the  oil  bath.  Details of  the microchannel test section are shown in Figure 2. The 

test section consists of total seventy nine stainless steel tubes having the inner diameter 279   and 45  mm   long   

arrange  in  the  circumferential manner. Three copper-constantan (T-Type) thermocouples were used to measure the 

temperatures at the inlet and outlet of the test section as well as of the oil of the oil bath and hand operated digital 

RS232 manometer (has a pressure range of 0 to 100 Psi with an accuracy of ±0.3% of its full scale at 25°C) was 

used to measure the differential pressure between the inlet and outlet of the test section as shown in Figure 2. HJ-123 

heater of 500 W was placed in the oil bath to heat the oil and the connection of this heater through the blind 

temperature controller (BTC) which cut the electric supply of the heater when the temperature of the oil reaches the 

desired temperature. The first step in conducting the experiment was to fill the water tank with Deionized water and 

note down the initial as well as final reading of measuring scale of water tank before and after filling. This gives the 
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volume of water contained in the water tank. Once the water was filled, heater is turned on the heater and wait until 

the temperature of the oil reaches the desired temperature. Once the oil in the oil bath beaker attains this 

temperature, open the valve of water tank and motor is switched on. This allowed water to flow through the 

Microchannel Heat Exchanger. A set flow rate was established with the help of controlled valves by monitoring the 

digital manometer and setting the valve at a position where a predetermined pressure was measured on the digital 

manometer. After a steady state was reached, temperatures of water at inlet and outlet  of  the  test  section  were  

recorded  from  the  monitor  of temperature indicator keeping in mind that the temperature of the oil in the oil bath 

remained constant with time during measurement. Once the temperature measurements were completed, water is 

collected  in  the  volumetric  beaker  from  the  exit  section  for predetermined period of time and measured the 

flow rate. This procedure was repeated for several times for various differential pressure readings. The experiments 

cover the Reynolds numbers from 71 to 1495. 

Figure: 1 

 

 

Schematic diagram of Experimental setup 

 In conventional channels, internal laminar flow and heat transfer the surface irregularities are considered negligible 

for laminar flow, and the Nusselt number  for thermally fully developed flow is dependent on the cross sectional 

shape of the channel. 

Data Reduction 

In this Experimental study, Reynolds number is defined by 
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                                                                              Re =     
𝜌 𝑉 𝐷

µ
  (1) 

Where ρ is density of the fluid flowing through microchannel and V is the mean velocity of the flowing fluid, µ is 

the viscosity of fluid and   D is the hydraulic diameter defined by  

                                                                                     D =  
4 𝐴

𝑃
             (2) 

Where A is the area of cross section  and P is the wetted perimeter of  the microchannel. 

The Experimental friction factor based on the pressure drop measurements in microchannel flow are represented by 

Darcy friction factor which is given as 

                                                                                     fe =  
2𝛥𝑝𝐷

𝜌𝑉^2𝐿
  (3) 

 Where Δp is the pressure drop acroos the length of the microchannel, L  is the length of the microchannel, D  is the 

Hydraulic diameter of the channel, ρ is the density of fluid flowing through microchannel and V is the mean  

velocity of the flowing fluid. The experimental friction factor is compared with theoretical frction factor for fully 

developed laminar flow in circular pipes  based on classical macroscale theory given as  

                                                                       fth  = 64/Re  (4) 

In microchannel flow analysis, hydrodynamically developed flow is very important because of short length of 

microchannel [4]. Kays and Crawford [12] suggested a good approximation for development flow length  as given      

by relation (x+ =  x/ReD ),and fully developed flow is assumed valid above the value of x+ =0.05 [12]. 

RESULTS AND DISCUSSIONS 

In this experimental study the inlet and outlet plenums were incorporated to induce a uniform flow distribution in 

microchannels and total pressure drop between the inlet and outlet plenums is measured. The flow rate was varied 

from 54 mL/min  to 1367 ml/min and steady-state laminar flow was assumed, the flow velocity in microchannels 

varied from 0.19 m/s for lowest Reynolds number 71  to  4.72 m/s  for highest Reynolds number 1495 as sown in 

Fig.2. It can be seen from Fig.3 that the pressure drop is linearly proportional to Reynolds number for a given 

microchannel dimension and  the fluid flow is laminar without any transient effects as predicted by classical theory 

of fluid dynamics. The values of friction factors obtained from experimental pressure drop data are shown in Fig. 4. 

Each curve shows that experimental values are very close and consistent with the values predicted by the theory of 

fully developed flow as shown in fig.5. Steinke and Kandlikar [4] compared their experimental results with previous 

researchers data and suggested that the entrance effects caused by developing flows was very important and should 

be taken into consideration in microchannel flow. Our experimental results show the flow in michrochannels to be 

fully-developed as all of the x+  values  (0.11-2.26) obtained  are bigger than 0.05[12] and our experimental results 

are in good agreement with classical theory. Further the values of fexp /fth obtained by assuming fully-developed 

flow were between 0.79 and 1.23 except one value of  1.4  having ( average 1.03) which shows that the flow in 

microchannels can be well predicted by applying conventional friction factor theory and the flow inside the 

microchannels is fully-developed.  
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Figure: 2 

 

 

Fluid velocity variation with Reynolds number 

Figure: 3 

 

Total pressure drop variation with Reynolds number 
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Figure: 4 

 

Friction factor variation with Reynolds number 

Figure: 5 

 

Friction factor (Experimental & Theoretical) variation with Reynolds number 

 

CONCLUSIONS 
Experimental investigations have been carried out for friction factors in  single phase liquid flow inside circular 

microchannels. The experimental results obtained showed good agreement with conventional hydraulic theory and 

also suggested that the flow inside the microchannels was fully developed laminar flow in the range of experiments 
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conducted ( 71 ˂  Re   ˃ 1493) inside the circular microchannels  having  hydraulic diameter of 279 µm and 45 mm 

length. The flow in microchannels can be well predicted by applying conventional friction factor theory and the flow 

inside the microchannels is fully-developed.  

 

NOMENCLATURE  
Re               Reynolds  Number                                               𝛥𝑝              Experimental pressure drop               

Nu                        Nusselt Number                                                    L               Length of microchannel 

D                Microchannel hydraulic diameter                         x+              Hydraulic entance length 

MEMS          Micro-Electro Mechanical Systems                      ρ               Density of fluid 

f                            Friction factor                                                       µ               Viscosity of fluid 

V                          Mean flow velocity                                              fth                       Theoretical Friction factor 

A                          Microchannel cross section area                          fe                Experimental friction factor                                    
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